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CVM Modeling of the Square Ising Lattice with 
One Next-Nearest-Neighbor Interaction 
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As an analysis of the development of first-order behavior in two-dimensional 
Ising lattices, the square lattice with antiferromagnetic nearest-neighbor interac- 
tions and a ferromagnetic next-nearest-neighbor interaction in the (11) direction 
has been modeled. The phase diagram was calculated for a range of interaction 
parameters and imposed fields; the calculations were performed using the cluster 
variation method (CVM). Analysis of the calculations suggests that no 
first-order behavior is developed in this system, so that higher dimensionality or 
connectivities are required before such behavior is developed. 
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1. DESCRIPT ION OF P R O B L E M  

The development of first-order behavior in two-dimensional systems is of 
fundamental interest in the study of lattice models and phase transitions. 
The ordering transition on the square lattice with only nearest-neighbor 
interactions is known to be second order under all conditions, whereas the 
square lattice with next-nearest-neighbor interactions in two directions 
develops a first-order transition for specific choices of nearest-neighbor and 
next-nearest-neighbor interaction parameters. (1) The present study con- 
siders the intermediate case of a square lattice with next-nearest-neighbor 
interactions in one direction only. 

Recent work relating to this model includes that of Verhagen (2) and 
Wu, ~3) each of which obtained solutions of the anisotropic triangular Ising 
lattice along particular trajectories in its parameter space; Wu's work is of 
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particular interest inasmuch as the effect of a three-site interaction on the 
phase relations is considered. Expanding upon the solution of Verhagen, 
Rujan (4~ analyzed the fully isotropic antiferromagnetic triangular lattice 
with nearest-neighbor interactions. 

2. H A M I L T O N I A N  

The Hamiltonian is 

i , j  i , j  i , j  

where a~.j represents a spin on the i, j lattice site, which can have value + 1 
or - 1 .  The first sum is over nearest neighbors, whereas the second sum is 
over next-nearest neighbors in the single direction considered (Fig. 1), and 
the last term is a field term, which represents interaction between the spins 
and an imposed field; H is the field strength and # is the coupling 
coefficient. 

The behavior of the model in zero field ( H = 0 )  is well known; 
equilibrium long-range order (q) is given by the expression (5) 

(1 - x~)4(1 - x ~ )  2 

q8 = 1 - 16(1 + x~x2)(xl + x2xt)2(x2 + x~) 

where 

xi=tanh(2effkT) 
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Fig. l. Lattice numbering,  el and e2 are nearest-neighbor and next-nearest-neighbor interac- 
tions respectively, i and j are the two indices defining a site. Shaded triangles c~ and /~ 
represent the two basic clusters. 



CVM Modeling of Square Ising Lattice 263 

The present study is limited to cases subject to the constraint that the 
nearest-neighbor interactions (e~) are equal in value and negative 
(antiferromagnetic), whereas e2 is positive (or ferromagnetic). In this case, 
the ordered state ( T = 0 )  is rows [in the (11) direction] of parallel spins, 
the rows alternating in orientation; there is no bond frustration if H =  0. 
This particular choice of interactions was chosen to relate most closely to 
the study of Nienhuis and Nauenberg(~); other cases could be studied with 
little difficulty. 

3. M E T H O D  E M P L O Y E D  

The phase diagram of this model was calculated using the cluster 
variation method (CVM) of Kikuchi (6) with two three-site triangles as 
basic clusters, illustrated as the shaded triangles c~ and fi in Fig. 1. The 
CVM truncates the expression for the configurational entropy by consider- 
ing only correlations among sites within a basic cluster, and so tends to 
overestimate transition temperatures because long-range correlations are 
ignored. The effect of chosing an alternative basic cluster will be discussed 
below. 

The configurational entropy for the ordered phase is given by 

S = N k  ln(f2) 

where f2 is the degeneracy factor, that is, the number of ways of 
constructing the system. The mechanics of constructing the degeneracy 
factor for a given lattice topology and basic cluster has been discussed by 
many authors. (6 8) 

If one of the smallest triangles in Fig. 1 is chosen to be the basic 
cluster, and if we denote by Pi, H~j, Yo, and T0. k (i, j, k = _+ 1 ) the propor- 
tion of points, next-nearest-neighbor bonds, nearest-neighbor bonds, and 
triangles (respectively) with a given configuration, the degeneracy factor is 
found to be 

= [H][y]~/[r]~[p] 

where 

FT]= [1 (r~N!) 
i , j , k  - -  • 1 

and [H],  [ Y], and [P1 are defined analogously. 
In the present case, the ordering scheme requires an expansion of the 

degeneracy factor; in the ordered phase, not all points, next-nearest- 
neighbor bonds, and points are equivalent. In particular (referring to 
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Fig. 1), points for which i + j  is odd are equivalent in the ordered phase, 
but not equivalent to those for which i + j  is even. The former set will be 
referred to as sublattice ~ and the latter as fl, with configuration 
probabilities P~.i and P~.i, respectively. Next-nearest-neighbor bonds that 
link two c~ or fl points are given configuration probabilities H~, U and H~,o., 
respectively, whereas triangles containing H~,u and Hp, 0 bonds are given 
configuration probabilities T~,0k and T~,,Tk, respectively. The expanded 
degeneracy factor is 

- ([H~][H~])~/2([Y~][Yp]) 
[ TA [T~ ] ( [PA [P~ ] )  '/= 

Note that the nearest-neighbor bonds (Y) are shared by both a and 
fl triangles. Expansion of this term in the above expression is for 
computational and notational convenience; corresponding terms were 
constrained during the calculations. 

The thermodynamic parameter minimized in the CVM is the grand 
potential: 

G.P.= E -  TS + H# ~ ai,j 
i , j  

The parameters of interest are the long-range order parameter q, which 
measures the perfection of the ordered phase and is defined as 

P~,I -- P/~,I q -  
P~,I + P~,I 

and the short-range order parameters, which measure correlations between 
nearest neighbors (rl) and between next-nearest neighbors (r2), defined as 

rl = YI,1 + Y 1, 1 - Y-1,1 - -  Y1,-1  

rz=HI,I+H_I_I-H 1,1 - -  H I , _ I  

Note that r, and r2 are defined separately for sublattices ~ and fl, with 
appropriate choices of Y and H. Finally, the magnetization M is defined as 

(P~,I+P~,I-P~, 1 - P / ~ ,  1)/2 

4. R E S U L T S  

Four different energy ratios were considered, l o g ( - e j e 2 ) = -  1, 0, 1, 
and 1.5. For each energy ratio, isothermal sections were calculated at 
T/T,. = 0.2, 0.4, 0.6, and 0.8, as well as a polythermal section at H =  0. 
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Fig. 3. 
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Fig. 2. Relation between long-range order q and imposed field H as a function of 
temperature T for the case c2 = - e l ;  T ,  is the critical temperature of H =  0. 

Figure 2 shows the relation between H and q for the case e 2 =  - e l ;  
the other cases are qualitatively the same. The loss of long-range order 
becomes more abrupt at lower temperature; this may be extrapolated to a 
hypothetical first-order transition at absolute zero. For temperatures near 
T,., q appears to increase slightly as H varies from zero to small values; this 
may be an artifact of the CVM and is in any case a small effect. 

Figure 3 plots the relation between M and q for the same case. This 
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Relation between long-range order q and magnetization M as a function of 
temperature for the case e2 = - e l ;  T,. is the critical temperature for H =  0. 
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Fig. 4. Critical surface as a function of el/kT, e2/kT, and H#/kT,.. 

relation parallels that between H and q; q decreases continuously to zero as 
the M increases, and for T near To, q increases slightly as M diverges 
slightly from 0.0. Note  that the limiting values of M in the ordered phase is 
0.5; this is found in all cases. 

Plotting the critical surface as a function of the two energy parameters 
(Fig. 4) and contouring in H # / k T  C, we note that as - e l / e 2  decreases, the 
H =  0 contour recedes to infinity as the lattice more closely approximates 
an ensemble of one-dimensional Ising lattices, which lack a phase 
transition. This contour crosses the abscissa at the calculated critical 
temperature of the simple square lattice and is within a few percent of the 
exact value. 

5. S H O R T - R A N G E  O R D E R  

The short-range order, in contrast to the long-range order, is finite for 
temperatures well in excess of the critical temperature. Figure 5 illustrates 
the specific case of - e l / e 2 = e  ls and H = 0 .  The variation of long-range 
order q with temperature is included for comparsion. Both short-range 
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Fig. 5. Degree of order versus temperature T/T,. for the case - e ~ / e 2 = e  ~5 and H=0. The 
short-range order parameters r~ and r 2 and long-range order parameter q are given. Note that 
as e~ is negative (antiferromagnetic), the sign of rl is also negative--the absolute value has 
been plotted. 

order parameters approach zero asymptotically as temperature increases, 
but at all temperatures the parameter  rl is larger than r2, because el is the 
stronger interaction. 

Each short-range order curve goes through an inflection at To, 
reflecting the qualitative change in the two-particle correlation function 
when long-range order is established. 

6. F I R S T - O R D E R  B E H A V I O R  

The calculations were examined for evidence of a first-order transition; 
either a discrete change in slope of the grand potential versus imposed field 
relation at the transition point, or the coexistence of two phases of differing 
magnetization at the same value of imposed field. The examination 
revealed that neither criterion was met in any case, indicating that the 
transition is second order everywhere. 

7. C O N C L U S I O N S  

The phase diagram of the square Ising lattice with antiferromagnetic 
nearest-neighbor interactions and ferromagnetic next-nearest-neighbor 
interactions in one direction has been solved in the two-triangle CVM 
approximation.  The phase diagram shows a second-order transition at all 
temperatures and ratios of interaction energies; there is no evidence of first- 
order behavior. This result, considered in the light of earlier work, (1) 
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indicates that first-order behavior is only developed at higher dimen- 
sionalities and/or lattice connectivities than this lattice. In particular, it 
appears that the addition of the second next-nearest-neighbor interaction is 
necessary for first-order behavior to be developed in two dimensions. The 
two-triangle approximation is minimal for this lattice; the accuracy of the 
phase diagram would be improved by a choice of a larger basic cluster, e.g., 
a nine-point quadruple square; however, the calculations performed in this 
study and analysis of the modeling procedure suggest that further modeling 
of this lattice would not significantly change the conclusions. It is worth 
noting that the study of Kurata e t a / .  (9) suggests that the results obtained 
by using a two-triangle rhombus (i.e., an ~ and a fl triangle joined along a 
nearest-neighbor bond) would be identical to the present results. 
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